MOTION OF AN INCLINED PLATE UNDER A FREE ROUNDARY

(DVIZHENIE NAKLONNOI PLASTINKI POD SVOBODNOI POVERKHNOST' IU)

PMM Vol.27, No.4, 1963, pp.735-738
L. A. EPSHTEIN
(Moscow)
(Received May 10, 1963)

The problem under consideration is the plane steady motion of an ideal incompressible gravity-free fluid of infinite depth past an inclined plate under a free boundary. The formulation of the problem corresponds closely to the motion of a plate in the case of a large Froude number. The solution is obtained by using the methods of the theory of jets.

1. The flow pattern in the physical $z=x+i y$ plane is shown on Fig. 1.

A flow of speed V_{0} is impinging upon the plate. The velocity vector at infinity makes an angle α_{1} with the plate. Far upstream, the streamline which passes through the forward stagnation point D is at a distance h from the free surface $E F$. It is assumed that the point B is the rear stagnation point, i.e. that the Joukowski-Chaplygin condition is satisfied.

Figure 2 shows the situation in terms of the following complex vari-

Fig. 1. able:

$$
\vartheta=V_{0} d z / d w=\left(V_{0} / V\right) e^{i \theta}
$$

where V is the speed and θ is the angle the velocity vector makes with the real axis. In the θ plane, the plate corresponds to the real axis.

The free surface in the θ plane corresponds to a circular arc slit on the circle $|\hat{v}|=1$, between the angles of largest inclination θ_{1} and smallest inclination θ_{2} of the free stream surface. Thus, in the θ plane the flow takes place in a doubly connected domain obtained by removing a circular arc from the upper half-plane.

Figure 3 shows the complex potential plane $w=\varphi+i \psi$. It is assumed, (see Fig. 1), that $\psi=0$ along CD. At the point D we take $\varphi=0$. Since to one and the same point z on the streamline $\psi=0$ there may correspond two distinct values of the potential

Fig. 2. φ, one must have a slit, or cut, along the real axis, $\psi=0$, to the right of

Fig. 3.
the point D. The difference between the values of φ at the points B and B^{\prime} (Fig. 3), is obviously equal to the circulation around the plate.

The solution of the problem in question may be obtained by determining the conformal representation of the domains of the motion in the θ and w planes on a domain in a parametric v plane, that is to find

$$
\begin{equation*}
\theta=V_{0} d z / d w=f_{1}(v), \quad w=f_{2}(v) \tag{1.1}
\end{equation*}
$$

As the parametric domain we shall choose the interior of a rectangle.
2. Let us map the interior of a rectangle in the v plane conformally onto the domain of the motion in the w plane. First we shall map the w domain on the upper half-plane of an auxiliary variable T. Let us map the points E, F, D of Fig. 3 into the points $T=\infty, T=1$ and $T=0$ of the real axis. Employing the Schwarz-Christoffel formula, we obtain

$$
\begin{equation*}
w=C_{1}[\tau+\ln (\tau-1)-\pi i] \tag{2.1}
\end{equation*}
$$

For real $\tau \geqslant 1$, the stream function $\psi=h V_{0}$; taking this into account, and comparing the imaginary parts of both sides of equation (2.1), we can determine C_{1} and obtain

$$
\begin{equation*}
w=-\frac{h V_{0}}{\pi}[\tau+\ln (\tau-1)-\pi i] \tag{2.2}
\end{equation*}
$$

In the T plane the plate corresponds to the segment $B^{\prime} B$ of the real axis, and the free surface corresponds to the semi infinite ine $F E$
(Fig. 4).
Let us now map the upper T half-plane on the interior of the rectangle in the parametric v plane of Fig. 5. Suppose, in doing this, that the segment $B^{\prime} B$ corresponds to the lower side of the rectangle, while the segment $F E$ corresponds to the upper side of the rectangle.

Fig. 4.
Employing anew the Schwarz-Christoffel formula, we may write

$$
\begin{equation*}
v=A_{1} \int_{\tau}^{\infty} \frac{d t}{\sqrt{\left(t-s_{1}\right)\left(t-s_{2}\right)\left(t-s_{3}\right)}}+A_{2} \tag{2.3}
\end{equation*}
$$

where $s_{1}=1, s_{2}$ and s_{3} are the coordinates of the points F, B and B^{\prime} in the τ plane. Let us introduce the new variable $t_{1}=t+s$; and the abbreviations

$$
\begin{equation*}
s_{1}+s=e_{1}^{\prime}, \quad s_{2}+s=e_{2}^{\prime}, \quad s_{3}+s=e_{3}^{\prime} \tag{2.4}
\end{equation*}
$$

where s is defined by means of the condition: $e_{1}^{\prime}+e_{2}^{\prime}+e_{3}^{\prime}=0$.

Then (2.3) may be written as follows:
$v=2 A_{1} \int_{\tau+8}^{\infty} \frac{d t_{1}}{\sqrt{4\left(t_{1}-e_{1}^{\prime}\right)\left(t_{1}-e_{2}^{\prime}\right)\left(t_{1}-e_{3}^{\prime}\right)}}+A_{2}$

Fig. 5.

Inverting the integral, we obtain

$$
\begin{equation*}
\tau+s=\wp_{\Omega}\left(\frac{v-A_{2}}{2 A_{1}}, \Omega_{1}, \Omega_{2}\right) \tag{2.5}
\end{equation*}
$$

where 8_{Ω} is the elliptic function of Weierstrass, with periods Ω_{1}, Ω_{2}, which are expressed in terms of $e_{1}{ }^{\prime}, e_{2}{ }^{\prime}$ and $e_{3}{ }^{\prime}$ by means of the formulas

$$
\begin{equation*}
\Omega_{1}=\frac{2 K}{\sqrt{e_{1}^{\prime}-e_{3}^{\prime}}}=\frac{2 K}{\sqrt{1-s_{3}}}, \quad \Omega_{2}=\frac{2 K^{\prime} i}{\sqrt{e_{1}^{\prime}-e_{3}^{\prime}}}=\frac{2 K^{\prime} i}{\sqrt{1-s_{3}}} \tag{2.6}
\end{equation*}
$$

Here K and K^{\prime} are the complete elliptic integrals of the first kind with the moduli

$$
\begin{equation*}
k=\left(\frac{e_{2}^{\prime}-e_{8}^{\prime}}{e_{1}^{\prime}-e_{3}^{\prime}}\right)^{1 / 2}=\left(\frac{s_{2}-s_{8}}{1-s_{3}}\right)^{1 / 2}, \quad k^{\prime}=\sqrt{1-k^{2}}=\left(\frac{1-s_{2}}{1-s_{3}}\right)^{1 / 2} \tag{2.7}
\end{equation*}
$$

In turn, the roots $e_{1}{ }^{\prime}, e_{2}{ }^{\prime}$ and $e_{3}{ }^{\prime}$ may be expressed in terms of the periods Ω_{1}, Ω_{2} by means of the formulas

$$
\begin{equation*}
e_{1}^{\prime}=\wp_{\Omega}\left(1 / 2 \Omega_{1}\right), \quad e_{2}^{\prime}=\wp_{\Omega}\left(1 / 2\left(\Omega_{1}+\Omega_{2}\right)\right), \quad e_{3}^{\prime}=\wp_{\Omega}\left(1 / 2 \Omega_{2}\right) \tag{2.8}
\end{equation*}
$$

Employing (2.8), and fulfilling the conditions for correspondence between points, we obtain, after simple transformations, that

$$
\begin{equation*}
\tau+s=8_{\Omega}\left(v+1 / 2 \Omega_{2}\right) \tag{2.9}
\end{equation*}
$$

The base, H_{1}, and the height, H_{2}, of the rectangle, are given by

$$
\begin{equation*}
H_{1}=1 / 2 \Omega_{1}, \quad H_{2}=1 / 2 \Omega_{2} \tag{2.10}
\end{equation*}
$$

The quantity $2 A_{1}$ has thus been set equal to unity, which amounts to choosing the scale of measurement. From the theory of elliptic functions, [1] we use the known formulas relating $\varepsilon_{\Omega}\left(v+1 / 2 \Omega_{2}\right)$ and $\gamma_{\Omega}(v)$, and $\delta \Omega_{\Omega}$ and the Jacobi functions, we may write

$$
\begin{equation*}
\tau=s_{2} s n^{2}\left(v \sqrt{1-s_{3}}\right)+s_{3} c n^{2}\left(v \sqrt{1-s_{3}}\right) \tag{2.11}
\end{equation*}
$$

Where the functions $s n$ and $c n$ have the modulus k of (2.7).
3. Let us map the domain of the flow in the $\boldsymbol{\vartheta}$ plane on the $\hat{\vartheta}_{1}$ plane, in such a way that the contour of the "plate" in the ϑ plane goes into the unit circle in the $\hat{\vartheta}_{1}$ plane and that the slit corresponding to the free surface, in the ϑ plane is mapped into a portion of the real axis in the ϑ_{1} plane.

This required transformation (Fig. 6) is given by

$$
\begin{equation*}
\hat{\vartheta}_{1}=-i \frac{\vartheta+i}{\vartheta-i} \tag{3.1}
\end{equation*}
$$

Applying to the $\boldsymbol{\vartheta}_{1} \mathrm{pl}$ ane the Joukowski transformation:

Fig. 6.

$$
\begin{equation*}
\vartheta_{2}=1 / 2\left(\theta_{1}+\theta_{1}^{-1}\right) \tag{3.2}
\end{equation*}
$$

we may transform the unit circle in the $\boldsymbol{\theta}_{1}$ plane on the slit from -1 to +1 along the real axis in the θ_{2} plane. The slit corresponding to the "free surface" also falls on the real $\boldsymbol{\vartheta}_{2}$ axis. The end points a_{1} and a_{2} of this slit (Fig. 7) are related to the limiting values of the slope of the free surface by means of the equations

$$
\begin{equation*}
a_{1}=\frac{1}{\cos \theta_{1}}, \quad a_{2}=\frac{1}{\cos \theta_{2}} \tag{3.3}
\end{equation*}
$$

The point at infinity, upstream, on the free surface corresponds to the point on the lower side of the slit,

Fig. 7.

$$
\begin{equation*}
a=\frac{1}{\cos \alpha_{1}} \tag{3.4}
\end{equation*}
$$

The exterior of two slits (see [2]) may be mapped onto a rectangle in the u plane
(Fig. 8) by means of the relations

$$
\begin{equation*}
\boldsymbol{\vartheta}_{2}=\operatorname{im}[\zeta(u-\alpha)-\zeta(u+\alpha)]+C \tag{3.5}
\end{equation*}
$$

where ζ is the Weierstrass function. The "plate" segment goes into the base of the rectangle, of length ω_{1}, the segment representing the "free surface" goes over into the top side of the rectangle, and the remainder of the real axis goes into the vertical sides, of height $1 / 2 \omega_{2}$. The purely imaginary number α is the image in the u plane of the point at infinity in the $\boldsymbol{\vartheta}_{2} \mathrm{pl}$ ane. The point at the rear of the plate goes over into a point on the base of the rectangle with affix μ. The constants a, m, C, and the ratio of the periods ω_{2} / ω_{1} determine the coordinates of the end points of the slits in the $\boldsymbol{\theta}_{2}$ plane.

Employing a known formula from the theory of elliptic functions, (3.5 may be replaced by

$$
\begin{equation*}
v_{2}=\operatorname{im}\left[\frac{8^{\prime}(\alpha)}{\wp^{\prime}(u)-\gamma^{\prime}(\alpha)}-2 \zeta(\alpha)\right]+C \tag{3.6}
\end{equation*}
$$

where $\wp(u)$ is the elliptic function of Weierstrass, with periods ω_{1} and ω_{2}. On

Fig. 8. the imaginary axis $\wp(u)$ is real and negative, and $\wp^{\prime}(u)$ is imaginary and negative. On the real axis $\gamma^{\prime}(u)$ varies from ∞ to $\wp\left(1 / 2 \omega_{1}\right)=e_{1}$ and is symmetric with respect to $u=1 / 2 \omega_{1}$.

It may be shown that, along the base of the rectangle, the value $u=0$ corresponds to the minimum $\vartheta_{2}=-1$, and the value $u=1 / 2 \omega_{1}$ corresponds to the maximum $\boldsymbol{\theta}_{2}=+1$. Employing this fact, one may determine the two constants in (3.6); and, after inserting the obtained values of the constants, one may rewrite (3.6) in the form

$$
\begin{equation*}
\vartheta_{2}=\frac{\wp_{1}(\alpha)+\wp_{1}(u)}{\wp_{1}(\alpha)-\ell_{1}(u)}, \quad \wp_{1}(u)=\wp(u)-e_{1} \tag{3.7}
\end{equation*}
$$

The two constants α and ω_{2} / ω_{1} remain free, because the end points of the "free surface" are not prescribed in the $\hat{\boldsymbol{\theta}}_{2}$ plane.

Let us choose the sides of our rectangle in the u plane equal to the corresponding sides of the rectangle in the v plane. Then, from (2.10). we obtain

$$
\begin{equation*}
\omega_{1}=1 / 2 \Omega_{1}, \quad \omega_{2}=\Omega_{2} \tag{3.8}
\end{equation*}
$$

If the abscissa u_{1} of the points E, F equals the abscissa μ of the points $B^{\prime} B$, then the conformal mapping of the ϑ_{2} domain on the rectangle in the v plane (Fig. 5) may be obtained, in view of the periodicity of
the function $\wp(u)$, by putting $u=v+\mu$ in (3.7).
Indeed, if this choice is made, then the contours of the rectangles coincide, the bases correspond to the "plate" and the tops correspond to the "free surface". The positions of the points B^{\prime}, B, E and F will then agree. Let us write down the condition which guarantees that $u_{1}=\mu$. The number u_{1} may be obtained from (3.7) for $\boldsymbol{\vartheta}_{2}=1 / \cos \alpha_{1}$, according to (3.4).

Carrying out the corresponding calculations for u_{1}, we obtain the equation

$$
\begin{equation*}
\wp\left(u_{1}\right)=e_{2}\left(\frac{e_{3}}{e_{2}} \cdot \frac{\wp_{1}(\alpha)}{e_{1}-e_{3}} \cdot \frac{\cos \alpha_{1}-1}{\cos \alpha_{1}+1}-1\right)\left(\frac{\wp_{1}(\alpha)}{e_{1}-e_{3}} \cdot \frac{\cos \alpha_{1}-1}{\cos \alpha_{1}+1}-1\right)^{-1} \tag{3.9}
\end{equation*}
$$

ซhere e_{1}, e_{2} and e_{3} are connected with the periods ω_{1} and ω_{2} of the function $\wp(u)$ by relations which are analogous to (2.8).

The number μ may be expressed in terms of the coordinates u_{1} and u_{2} of the stagnation point D, which corresponds to $\boldsymbol{\theta}_{2}=0$ and to $T=0$. From (3.7) and (2.11) we obtain the following equations for the determination of u_{2} and v_{2} :

$$
\begin{equation*}
\wp_{1}\left(u_{2}\right)=-\wp_{1}(\alpha), \quad \frac{\operatorname{sn}^{2}\left(v_{2} \sqrt{\left.1-s_{3}\right)}\right.}{c n^{2}\left(v_{2} \sqrt{\left.1-s_{3}\right)}\right.}=-\frac{s_{3}}{s_{2}} \tag{3.10}
\end{equation*}
$$

From the equation $u=v+\mu$ (Figs. 5 and 8) it follows that one has $\mu=u_{2}-v_{2}$.

The equation $u_{1}=\mu$ implies that $u_{1}=u_{2}-v_{2}$.
Substituting this result into (3.9), and replacing $\gamma_{0}(\alpha)$ by means of (3.10), we obtain the following equation for u_{2} :

$$
\begin{equation*}
\wp\left(u_{2}-v_{2}\right)=e_{2}\left(\frac{e_{3}}{e_{2}} \frac{\wp_{1}\left(u_{2}\right)}{e_{1}-e_{3}} \frac{\cos \alpha_{1}-1}{\cos \alpha_{1}+1}+1\right)\left(\frac{\wp_{1}\left(u_{2}\right)}{e_{1}-e_{3}} \frac{\cos \alpha_{1}-1}{\cos \alpha_{1}+1}+1\right)^{-1} \tag{3.11}
\end{equation*}
$$

Employing the addition theorem for \wp, and the relation connecting \wp° and \wp, we obtain from (3.11) an algebraic equation for $\wp\left(u_{2}\right)$, whose solution yields u_{2}, after which α may be obtained from (3.10).

In order to determine the constants corresponding to a given angle of attack α, it is convenient to fix first the values s_{2} and s_{3}; then to obtain Ω_{1} and Ω_{2} from (2.6) and (2.7), then v_{2} from (3.10), and then ω_{1} and ω_{2} from (3.8). Knowing ω_{1} and ω_{2}, one may then compute e_{1}, e_{2} and c_{3}, by means of formulas which are analogous to (2.8); and then (3.11) may be solved. Further, (3.10) then determined $\wp(\alpha)$, and hence μ may be obtained.

Combining equations (3.1), (3.2) and (3.7), and observing that $u=v+\mu$, we get

$$
\begin{equation*}
\frac{2 \theta}{\vartheta^{2}+1}=\frac{\varphi_{1}(\alpha)+\varphi_{1}(v+\mu)}{\varphi_{1}(\alpha)-\varphi_{1}(v+\mu)} \tag{3.12}
\end{equation*}
$$

by means of which the domain in the 0 plane is mapped conformally on the rectangle in the parametric plane v. The conformal mapping between the w and v planes is given by the formulas (2.2) and (2.11).

Once $V_{0} d z / d w=f_{1}(v)$ and $w=f_{2}(v)$ are known, then the pressure distribution on the plate, the resultant forces, the streamlines, and so forth, may be determined by the usual methods [3].

BIBLIOGRAPHY

1. Turvits, A., Teoriia analiticheskikh i ellipticheskikh funktsii (Theory of analytic and elliptic functions). Gostekhizdat, 1933.
2. Sedov, L. I., Ploskie zadachi gidrodinamiki i aerodinamiki (Plane problems of hydrodynamics and aerodynamics). Gostekhizdat, 1950.
3. Gurevich, M.I. Teoriia strui ideal'noi zhidkosti (Theory of jets of an ideal fluid). Fizmatgiz, 1961.
